Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The reported “dissociation times” for the Br2 C (1Πu 1u) state by various measurement methods differ widely across the literature (30 to 340 fs). We consider this issue by investigating attosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the Br M4,5 3d3/2,5/2 edges (66 to 80 eV), tracking core-to-valence (3d → 4p) and core-to-Rydberg (3d → ns, np, n ≥ 5) transitions from the molecular to atomic limit. The progress of dissociation can be ascertained by the buildup of the atomic absorption in time. Notably, the measured rise times of the 3d5/2, 3/2 → 4p transitions depend on the probed core level final state, 38 ± 1 and 20 ± 5 fs for 2D5/2 and 2D3/2 at 64.31 and 65.34 eV, respectively. Simulations by the nuclear time-dependent Schrödinger equation reproduce the rise-time difference of the 3d → 4p transitions, and the theory suggests several important factors. One is the transition dipole moments of each probe transition have different molecular and atomic values for 2D5/2 versus 2D3/2 that depend on the bond length. The other is the merger of multiple molecular absorptions into the same atomic absorption, creating multiple timescales even for a single probe transition. Unfortunately, the core-to-Rydberg absorptions did not allow accurate atomic Br buildup times to be extracted due to spectral overlaps with ground state bleaching, otherwise an even more comprehensive picture of the role of the probe state transition would be possible. This work shows that the measured probe signals accurately contain the dissociative wavepacket dynamics but also reveal how the specific probe transition affects the apparent progress toward dissociation with bond length. Such potential probe-transition-dependent effects need to be considered when interpreting measured signals and their timescales.more » « lessFree, publicly-accessible full text available December 5, 2026
-
Abstract Recently, nodal line semimetals based on ZrSiS-family have garnered massive research interests contributing numerous experimental and theoretical works. Despite being the most studied nodal-line semimetal, a clear understanding of the transient state relaxation dynamics and the underlying mechanism in ZrSiS is lacking. Using time- and angle-resolved photoemission spectroscopy, we study the ultrafast relaxation dynamics in ZrSiS and reveal a unique relaxation in the bulk nodal-line state which is well-captured by a simple model based on optical and acoustic phonon cooling. Our model predicts linear decay processes for both optical and acoustic phonon relaxations with optical cooling dominant at higher temperatures. Our results reveal different decay mechanisms for the bulk and surface states and pave a way to understand the mechanism of conduction in this material.more » « less
-
Recent developments in ultrafast laser technology have resulted in novel few-cycle sources in the mid-infrared. Accurately characterizing the time-dependent intensities and electric field waveforms of such laser pulses is essential to their applications in strong-field physics and attosecond pulse generation, but this remains a challenge. Recently, it was shown that tunnel ionization can provide an ultrafast temporal “gate” for characterizing high-energy few-cycle laser waveforms capable of ionizing air. Here, we show that tunneling and multiphoton excitation in a dielectric solid can provide a means to measure lower-energy and longer-wavelength pulses, and we apply the technique to characterize microjoule-level near- and mid-infrared pulses. The method lends itself to both all-optical and on-chip detection of laser waveforms, as well as single-shot detection geometries.more » « less
-
The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to most efficiently exploit “instantaneous” optical nonlinearities in noble gases for spectral broadening and parametric frequency conversion. Here, we show that nonlinear compression can be much more efficient when driven in molecular gases by pulses substantially longer than a few cycles because of enhanced optical nonlinearity associated with rotational alignment. We use 80-cycle pulses from an industrial-grade laser amplifier to simultaneously drive molecular alignment and supercontinuum generation in a gas-filled capillary, producing more than two octaves of coherent bandwidth and achieving >45-fold compression to a duration of 1.6 cycles. As the enhanced nonlinearity is linked to rotational motion, the dynamics can be exploited for long-wavelength frequency conversion and compressing picosecond lasers.more » « less
An official website of the United States government
